viernes, 28 de noviembre de 2008

Daltonismo

El daltonismo -denominado así por el físico británico John Dalton, quien lo padecía- es un defecto genético que consiste en la imposibilidad de distinguir los colores (discromatopsia). Aunque ningún daltónico confunde los mismos colores que otros, incluso pertenecientes a la misma familia, es muy frecuente que confundan el verde y el rojo; sin embargo, pueden ver más matices del violeta que las personas de visión normal y son capaces de distinguir objetos camuflados. También hay casos en los que la incidencia de la luz puede hacer que varíe el color que ve el daltónico.
El defecto genético es hereditario y está ligado al sexo, debido a que se transmite por un alelo recesivo ligado al cromosoma X, lo que produce un notable predominio en el varón entre la población afectada. La mujer puede portar la enfermedad en casos no tan comunes como en los varones, y la transmite a sus hijos varones. Probablemente, la mitad de sus hijos serán portadores. La transmisión genética es igual que en la hemofilia.
Contenido



Cuando miramos un objeto con color, el color que percibimos en ese momento puede variar dependiendo de cuando se vuelva a mirar. Por ejemplo, al anochecer los colores parecen diferentes de cuando los vemos con la luz del sol y diferente también de cuando lo vemos con luz natural o con luz artificial. Por ello cuando elegimos colores para decorar el interior, el tipo de luz o la fuente de luz que hay en la habitación se deberá tener en cuenta: si la luz es natural o artificial, si hay mucha o poca luz, si la luz es directa o indirecta, etc.

¿Por qué vemos los objetos de determinados colores?

Los objetos absorben y reflejan la luz de forma distinta dependiendo de sus características físicas, como su forma o composición…etc. El color que percibimos de un objeto es el rayo de luz que rechaza. Nosotros captamos esos “rebotes” con diferentes longitudes de onda, por medio de los ojos gracias a su estructura. Si los rayos de luz atraviesan al objeto, este es invisible.
Las células sensoriales(fotoreceptores) de la retina que reaccionan de forma distinta a la luz y los colores se les llama bastones y conos respectivamente.
Los bastones se activan en la oscuridad, y sólo permiten distinguir el negro, el blanco y los distintos grises. Nos permite percibir el contraste.
Los conos, en cambio funcionan de día y en ambientes iluminados, y hacen posible la visión en los colores. En realidad hay tres tipos de conos; uno especialmente sensible a la luz roja, otro a la luz verde y un tercero, a la luz azul. Cada Cono (célula) está conectado individualmente con el centro visual del cerebro por medio del nervio óptico. La combinación de estos tres colores: rojo, amarillo y azul es suficiente como para ver unos 20 millones de colores distintos. Así por ejemplo el naranja es rojo con un poco de amarillo y el violeta azul con un poco de rojo. Es en el cerebro donde se lleva a cabo esta interpretación, pues en el ojo solo se capta la luz.
Los daltónicos no distinguen bien los colores por fallo de los genes encargados de producir los pigmentos de los conos. Así, dependiendo del pigmento defectuoso, la persona confundirá unos colores u otros. Por ejemplo si el pigmento defectuoso es el del rojo, el individuo no distinguirá el rojo ni sus combinaciones. También puede darse el daltonismo por falta de un tipo de cono, teniendo así solo dos. De esto hablaremos a continuación en los tipos de daltonismo.

Tipos de daltonismo
Monocromático


Como su nombre indica, éstos individuos sólo poseen un tipo de cono y sólo pueden ver un tipo de color.

Dicromático


Estas personas poseen dos tipos de conos. La afectación se presenta con variantes, pueden haber individuos ciegos al color rojo, individuos que confunden sombras de rojo, verde y amarillo; o individuos ciegos al azul y que a su vez confunden sombras de verde y azul o naranja y rosa.

Tricromático anómalo


La persona padeciente posee los tres tipos de conos, con defectos funcionales, por lo que confunden un color con otro. Es el grupo más abundante y común de daltónicos, tienen tres tipos de conos, pero perciben los tonos de los colores alterados. Suelen tener defectos similares a los daltónicos dicromáticos, pero menos notables.

Acromático

Los conos de la persona padeciente no funcionan y sólo tiene visión en blanco y negro. Ésta condición es muy rara, ya que se ha visto en muy pocos casos.

Personajes ficticios con daltonismo


Fox Mulder (interpretado por el actor estadounidense David Duchovny) es uno de los protagonistas de la serie televisiva "The X-Files", padece del daltonismo más común que es la dificultad de diferenciar los colores verde y rojo.
John Doe, personaje de la serie homónima e interpretado por Dominic Purcell padece ceguera monocromática.

Dwayne (interpretado por el actor estadounidense Paul Dano) en la película Pequeña Miss Sunshine, padece daltonismo común

Ejemplos de Daltonismo






jueves, 27 de noviembre de 2008

juegos para tu movil

http://www.frontalweb.com.ar/foro/telefonia-celular/16199-mas-de-470-juegos-para-celular.html

buscador google

http://www.google.com.mx/

conoce mexico a fondo

http://www.esmexico.com/

sitios de interes/bibliotecas

http://www.sep.gob.mx/wb/sep1/sep1_Bibliotecas

Cuadro de punett

CUADRO DE PUNETT

Los genotipos y fenotipos resultantes de la recombinación de gametos durante la fertilización pueden ser fácilmente visualizados a través de la construcción del Cuadro de Punnett. En la figura de abajo se ilustra este método de análisis para un cruce monohibrido (una sóla característica) entre la F1. En el cuadro todos los posibles gametos que un individuo puede producir se colocan en una columna o en una fila, la columna vertical representará los gametos del parental masculino y la fila horizontal los del parental femenino. Después de ubicar los gametos, la nueva generación se predice combinando la información femenina y masculina, el genotipo obtenido se situa en uno de los casilleros que existen en el cuadro.Este proceso representa todos los posibles resultados de una fertilización, los genotipos y fenotipos de la potencial descendencia pueden ser encontrados leyendo los casilleros.









Ejemplo para cruce monohibrido heterocigoto
En las plantas de arvejas, semillas lisas (S) son dominantes sobre semillas rugosas (s). En una cruza genética de dos plantas que son heterocigotas para el carácter "forma de la semilla", ¿qué fracción de los descendientes deberían tener semillas lisas?






SOLUCIÓNLa figura de arriba representa una cruza monohíbrida de plantas híbridas F1. Ambos padres son heterocigotos (Ss) para un alelo que determina la forma de la semilla. La presencia de el alelo dominante (S) en plantas homocigotas (SS) o heterocigotas (Ss) da como resultado semillas lisas. Plantas homocigotas recesivas (ss) tienen semillas rugosas. Para resolver el problema 1, usted necesita hacer una cuadricula de Punnett. Esta guía lo llevará a través del proceso..

Construir una cuadricula de Punnett
1. Dibuje una cuadricula de Punnett de 2x 2









2.Anote los alelos del padre en el lado izquierdo de la cuadricula de Punnett. Cada gameto tendrá uno de los dos alelos del padre. En esta cruza en particular, la mitad de los gametos tendrá el alelo dominante (S), y la otra mitad tendrá el alelo recesivo (s).






3.Anote los alelos de la madre arriba de la cuadricula de Punnett (en plantas a los alelos de la madre también se le puede llamar padre 2). Para este padre 2 heterocigoto (Ss), la mitad de los gametos tendrá el alelo dominante (S), y la otra mitad tendrá el alelo recesivo (s).







4.Llene los cuadros para el padre. Llene cada cuadro con el alelo del Padre 1 en esa línea.











5. Llene los cuadros para el padre 2. Llene cada cuadro con el alelo del Padre 2 en esa columna.











Interpretación de los resultados de una cuadricula de Punnett.Ahora tenemos la información para predecir el resultado de la cruza. Los genotipos en los cuatro cuadros de la cuadricula de Punnett, tienen cada uno, las mismas posibilidades de ocurrir entre los descendientes de esta cruza. Ahora podemos tabular los resultados . Genotipos que resultaron de esta cruza monohíbrida (Ss x Ss)

Cada uno de los cuadros proporciona un cuarto de probabilidad es decir un 25%. Por consiguiente Existe un 25% de probabilidad de que el hijo tenga genotipo SS (homocigoto dominante) su fenotipo sería Liso.

Como puede observarse existe un 50% de probabilidad de que el genotipo del hijo sea Ss (heterocigoto). Su fenotipo seria liso.

También existe un 25% de probabilidad de que el genotipo del hijo sea ss (homocigoto recesivo). Su fenotipo seria rugoso.Al sumar los fenotipos de los cuatro cuadritos resusltantes se obtiene que: * Si se habla de fenotipo el hijo tiene un 75% de probabilidad de ser liso y un 25% de probabilidad de ser rugoso.* Si se habla de genotipo el hijo tiene un 25% de probabilidad de ser homocigoto dominante (SS), un 50% de probabilidad de ser heterocigoto (Ss) y un 25% de probabilidad de ser (ss) homocigoto recesivo.
La otra manera de presentar los resultados de este cruce monohibrido heterocigoto (Ss x Ss) es con una gráfica, tal y como se puede ver abajo.







Cada uno de los cuadros proporciona un cuarto de probabilidad es decir un 25%. Por consiguiente Existe un 25% de probabilidad de que el hijo tenga genotipo SS (homocigoto dominante) su fenotipo sería Liso.









Como puede observarse existe un 50% de probabilidad de que el genotipo del hijo sea Ss (heterocigoto). Su fenotipo seria liso.





También existe un 25% de probabilidad de que el genotipo del hijo sea ss (homocigoto recesivo). Su fenotipo seria rugoso.









Al sumar los fenotipos de los cuatro cuadritos resusltantes se obtiene que:





* Si se habla de fenotipo el hijo tiene un 75% de probabilidad de ser liso y un 25% de probabilidad de ser rugoso.






* Si se habla de genotipo el hijo tiene un 25% de probabilidad de ser homocigoto dominante (SS), un 50% de probabilidad de ser heterocigoto (Ss) y un 25% de probabilidad de ser (ss) homocigoto recesivo.




La otra manera de presentar los resultados de este cruce monohibrido heterocigoto (Ss x Ss) es con una gráfica, tal y como se puede ver abajo.








Cuadro de Punnett para cruce Dihidrido (dos características a la vez)
Cruce Dihíbrido muestra como será la progenie de los padres tomando en cuenta dos características simultaneamente, por ejemplo colocho y alto, pelo liso y alto, pelo liso y bajo, colocho y bajo.




EJEMPLO DE UN CRUCE DIHIBRIDO



Cruce dos semillas heterocigotas para color amarillo y textura lisa ( AaBb ). Encuentre los posibles genotipos y fenotipos. (Recuerde que el color amarillo es dominante sobre el color verde y que la textura lisa es dominante sobre la textura rugosa).



Solución1. Primero es recomendable realizar un dibujo para entender el problema.














2. Realice el cuadro tal y como se muestra abajo. Cuando se trata de un cruce monohibrido el cuadro de Punnett tiene cuatro cuadritos (cada cuadrito representa el 25%), cuando es un cruce dihibrido el cuadro tiene 16 cuadritos (cada cuadrito representa el 6.25%). Recuerde que al ser heterocigoto para ambas características se está hablando de la generación F1.








Como puede observarse los resultados son los siguientes:
Genotipo homocigoto dominante AABB = 6.25% (1 cuadro) su fenotipo es amarillo y liso.
Genotipo AABb = 12.50% (dos cuadritos) su fenotipo es amarillo y liso.Genotipo AaBB = 12.50% (dos cuadritos) su fenotipo es amarillo y liso.
Genotipo AaBb = 25% (cuatro cuadritos) su fenotipo es amarillo y liso.Genotipo AAbb = 6.25% (un cuadrito) su fenotipo es amarillo y rugoso.Genotipo Aabb = 12.50% (dos cuadritos) su fenotipo es Amarillo y rugoso.
Genotipo aaBB = 6.25% (un cuadrito) su fenotipo es verde y liso.Genotipo aaBb = 12.50% (dos cuadritos) su fenotipo es verde y liso.
Genotipo aabb = 6.25% (un cuadrito) su fenotipo es verde y rugosoAl sumar todos los posibles fenotipos obtemos que:1. La posibilidad que sea amarillo y liso es de 56.25%.2. La posibilidad que sea amarillo y rugoso es de 18.75%3. La posibilidad que sea verde y liso 18.75%4. La posibilidad que sea verde y rugoso es de 6.25%




viernes, 14 de noviembre de 2008

HERENCIA





HERENCIA
Herencia son las características que se transmiten de padres a hijos. Las características se transmiten por medio de los genes. Cada característica es transmitida por un par de genes.
A los gene que transmiten una misma característica se les llama alelos. Los genes pueden ser dominantes o recesivos.
Genotipo son las características que no se ven pero se tiene la información genética para ellos.
Fenotipo son las características que podemos ver en el individuo.
Una especie puede ser pura cuando los alelos son iguales.
Una especie es híbrida cuando los alelos son diferentes, puede ser homosigotica cuando son iguales y hetrosigotica cuando son diferentes.
Los descendientes se conocen con el nombre de progenie.
Mendel realizó experimentos con chícharos, cada ocasión utilizó únicamente una característica. Entre las características están: tamaño, textura, color, forma, posición de las flores, etc.
Trabajo con líneas puras en algunas ocasiones observó que los descendientes tenían características que no tenían los progenitores hasta después de que formulo sus leyes pudo explicar el porque.
Descubrimiento de los gametos, óvulos y espermatozoides.
Anton Van Lewenhuk observó por primera vez los espermatozoides. En 1672 el holandés Reigner Graaf descubrió los óvulos. En 1674 surge la teoría del preformismo que indicaba que el embrión ya estaba formado y esto necesitaba crecer.
Trabajos de Mendel.
Mendel observó que muchos rasgos de los organismos se transmitían de una generación a la siguiente. La capacidad de reproducir dichas características se encuentra en el genotipo, integrado este por numerosas subunidades llamadas genes los cuales contienen la información de las características de cada organismo.
Genotipo y Fenotipo.
La expresión de la información contenida en el genotipo origina el fenotipo. El genotipo no es observable directamente, se transmite de una generación a la siguiente. El fenotipo es la apariencia de un organismo, todo lo que puede observarse a simple vista.
Dominación y Recesividad.
Mendel escogió 7 características bien definidas de chícharos, las cuales fueron los fenotipos. Con los cruzamientos de las plantas. Mendel observó que algunas características siempre se expresaban mientras que otras no estaban presentes en la progenitoras, pero si en generaciones posteriores Mendel empleo una letra mayúscula para representar al gen que siempre aparece y lo llamo dominante, con minúscula designo al gen que sólo se manifiesta cuando el dominante esta ausente y lo llamo recesivo. Las formas alternativas o contrastantes del mismo gen se llaman alelos, son segmentos específicos del ADN. Cuando los 2 alelos son diferentes, el organismo es conocido como heterogotico, cuando un organismo tiene alelos idénticos, se dice que el genotipo es homocigotico.

Conceptos Generales.
1. ¿Qué es la Genética?
Es la rama de la Biologíaque estudia la herencia y sus variaciones.
2.- ¿Qué es la Herencia?
Es el conjunto de características psíquicas y físicas que se transmiten de padres a hijos.
3.- ¿Qué es un gen?
Es la unidad de la herencia.
4.-¿Qué son los cromosomas?
Son estructuras contenidas en el núcleo de cada célula y su función es transmitir la herencia. Están formados de ADN.
5. ¿Qué es un carácter?
Son los rasgos anatómicos que se transmiten de padres a hijos.
6.- ¿Cuáles son los dos caracteres que se transmiten de padres a hijos?
N.C. Dominante.- es aquel que aparece en la primera generación filiar (F,)
C.Resesivo.- es aquel que aparece apartir de la segunda generación filiar (F2).
7.- ¿Qué es el Genotipo?
Es la característica biológica de un ser que resulta de la unión de un óvulo con un espermatozoide (sexo).
8.- ¿Qué es el Fenotipo?
Son las características que presenta un individuo (su aspecto).
9.- ¿Qué es una mutación?
Es un cambio brusco en el genotipo y fenotipo de un ser, ocasionada por agentes mutantes.
Mutación en el Ser Humano.
Mutación es una alteración en el fenotipo y genotipo de un ser.
Es provocado por agentes mutantes como son: anilinas, rayos x, gama, infrarrojos, drogas, alcohol, medicamentos, radiaciones químicas, tabaco.
Las mutaciones pueden ser ocasionar dos daños:
a)Inmediato.- Es ocasionado cuando el agente mutante deforma al ser.
b)Tardío.- Ocasiona daños en las células reproductoras.
Las principales mutaciones son:
Polidactilia.- se desarrolla de 6 a 8 dedos en las manos y en los pies.
Sindactilia.- los dedos están soldados entre sí o presentan membranas interdigitales.
Braquidactilia.- es el acortamiento de los dedos de manos y pies.
Síndrome de Down.- es una sisomia en el cromosoma 21 (xxx) físicamente son de baja estatura, la lenguagruesa, boca entreabierta, ojos oblicuos, deficiencia intelectual muy baja y occipucio plano.
Maullido de Gato.- es una alteración en el cromosoma 5, no se desarrolla la laringe, esto provoca que los sonidos sean semejantes a maullidos, presentan deficiencia mental y microcefalia.
Hemofilia.- es la falta de coagulacion en la cabeza aportadora es la mujer pero se manifiesta solo en los hombres.
Daltonismo.- es una alteración en la visión de los colores debido a la mala estructuración de los conos y bastoncitos de la retina.
Síndrome de Turner.- es una mutación en el cromosoma 45 faltando una X en el cromosoma sexual solo se presenta en la mujer físicamente no adquiere la madurez sexual y biológicamente son estériles.
Síndrome de Klinelfelter.- es una alteración sexual en el cromosoma 47 o 48 siendo (xxx) o (xxxy) se presenta en los hombres, se presentan los caracteres secundarios, presenta ginecomastia desarrollo de las glándulas mamarias, son estériles y no alcanzan su madurez sexual.
Frente Olímpica.- es una alteración del hueso frontal se manifiesta con una proyección interna de los maxilares.
Herencia:
Características que adquirimos de nuestros antepasados.
La rama de la biologíaque se encarga del estudio de la herencia es la genética, ciencia muy nueva (con 100 años aprox.), pero con grandes avances, a raíz de la tecnología científica (con el microscopio) y el avance en otras materias (bioquímica, atología molecular, etc.).
Las características se conocen desde la antigüedad por el cultivo (al alterar condiciones del medio y ciclos reproductores), el ganado (para conseguir especies y domesticación), etc. Sin embargo, la genética empieza con el siglo por las aportaciones de Mendel, que se descubren al inicio del siglo y comienzan el estudio de la herencia.
Gregorio Mendel es el primer en encontrar el camino científico para los estudios sobre la herencia. En 1896 entrega sus trabajos a la Real Sociedad Botánica de Inglaterra, que la archiva hasta 1920. Era un monje de estudios teológicos, naturalista por afición, quien estudiando en Viena la historianatural comienza a observar parecidos evidentes y decide estudiar estas semejanzas.





APORTACIONES


Elige material vegetal, que no necesita tantos cuidados y que tienen mas facilidad para inseminar. Es mas resistente, no ocupa tanto espacio, sus tiempos de reproducción son rápidos y no tienen tantas plagas
No siguió todas las características sino que tomo una.
Hace una raza para (lavado de características). El eligió el chícharo y tomo el color (blanco y rojo) pero evito que saliera un color rojo con las blancas, cruzando los mismos colores en varias veces.
Crea un modelo matemático. Elige 4 ejemplares de cada cruza y sus trabajos se basan en el 4.
Crea un lenguaje especial:
Progenitores: pareja de la que se porta proveniente de una cruza selectiva previa (raza pura).
Filiales: las descendencias: F1 de progenitores, F2 de F1, etc.
Dominante: carácter fuerte.
Recesivo: carácter débil.
Raza pura: de características lavadas.
Cromosoma homocigo: cuando las 2 líneas transmiteno manifiestan la misma característica.
Locus: sitio que ocupa un gen.
Cromosoma heterocigo: cuando por la línea I y I’ hay diferentes manifestaciones o características.
Fenotipo: lo que se hace presente (lo que vemos).
Genotipo: lo que se puede transmitir (promesa genética):
En 1890 desconocía la meiosis, el aislamiento de los gametos, los cromosomas y su número, el crossing-over, tipos de herencia y los conocimientos bioquímicos contemporáneos.
LEYES DE MENDEL.
Ley o Ley de Uniformidad.
Cuando se cruzan 2 líneas puras todos los descendientes son iguales.
2ª Ley de la segregación independiente.
Los factores hereditarios no se fusionan sino que se separan durante la formación de los gametos y vuelven a unirse en la fecundación.
3ª Ley o Ley de la Distribución independiente.
Cuando en un híbrido se combinan varios genes o caracteres, estos se transmiten independientemente.

Cromosomas y su importancia.
Los cromosomas son estructuras filamentosas constituidas por cromatina, localizados en el núcleo de la célula, solamente se observan durante la división celular.
El número de cromosomas varia para cada especie. El ser humano tiene 46 cromosomas agrupado en pares.
Las células procariontes solamente tiene un cromosoma en el citoplasma.
Cariotipo.
Es el conjunto de cromosomas de una especie. Cariograma es la representación del cariotipo. Los cromosomas se organizan en grupos designados por letras y tamaño.
Las células eucariontes poseen 2 tipos de cromosomas.
Ocurren en herencia simple: una característica por 1 gen.
Ley de la dominancia.
Cuando se cruzan 2 progenitores de raza pura con la característica que se sigue contrastante toda la 1ª filial muestra el carácter dominante.
Ley de la segregación.
Las características genéticas se segregan, separan, nunca se mezclan.
Ley de la independencia.
Las características genéticas se transmiten independientes. Solo con zea no resultó.
Las Ideas sobre la herencia antes de Mendel
Los seres vivos originan seres semejantes a ellos, les transmiten sus características.
La genética es la rama de la biología que estudia cómo los progenitores transmiten sus características a sus descendientes.
Los conocimientos sobre la genética se desarrollaron en este siglo. Aún hay gran cantidad de incógnitas debido a que los científicos no las han resuelto todavía.
Desde tiempos remotos el hombre ha cultivado y criado especies con las cuales ha tratado a que estén mejor adaptadas a las necesidades humanas. Por ejemplo. los perros, si se quería tener perros pequeños, se cruzaban entre sí a los perros más pequeños; si se deseaba tener perros lanudos, se cruzaban entre sí los más lanudos.
La Hibridación.
Un híbrido es el descendiente de dos padres que difieren en uno o más rasgos heredables. Sus padres pueden pertenecer a variedades o especies distintas; por ejemplo: la mula resulta de cruzar un asno o burro con una yegua o un caballo con una burra. Si se cruza un toro Brahman con una vaca Shorthorn, se obtiene la raza conocida como Santa Gertrudis.
En 1840, Albert Von Kolliker propuso que el óvulo y el espermatozoide eran células. En 1879, Hermann Folobs, la fecundaciónde un óvulo de estrella de mar por un espermatozoide, así se concluyó que la unión de dos gametos uno femenino y otro masculino se originaba de un descendimiento y que ese mismo proceso debía de ocurrir tanto en animales como en plantas de reproducción sexual.
El estudio de la transmisión de las características hereditarias permitía entender porque al nacer niñas o niños o porque se transmiten características no deseadas como enfermedades hereditarias o alteraciones genéticas.
Los cromosomas sexuales constituyen el par 23 en la mujer se denominan por XX mientras en el hombre producen dos tipos XY.
Los cromosomas X y Y determinan el sexo del ser humano.
Los seres humanos, varones y mujeres, heredan a sus descendientes características propias del ser humano, les heredan, por ejemplo, la capacidad de razonamiento, postura y el bipedalismo.
No obstante que por lo general los descendientes heredan de sus padres caracteres deseables también heredan no deseables.
Los trabajos de Mendel.-
John Gregory Mendel (1822-1884) Monje Austriaco que empezó a experimentar a mediados del siglo pasado con el chícharo de jardín Pisom Santiuum y reunió sus resultados durante ocho años, los cuales resumió en tres grandes leyes conocidas como Leyes Mendelianas o de Mendel, publicó sus trabajos en 1866 y en 1869, pero pasó inadvertido. Fue hasta 1900 cuando Carl Correans de Alemania, Hugo de Urres de Holanda y Erik Von Tserchimark de Austria descubren su importancia pero Mendel no vive para verlo pues muere en 1884.
Mendel escogió a los chícharos por las siguientes razones:
Son hermafroditas, por lo tanto pueden autofecundarse.
Su reproducción es muy rápida y por lo mismo las generaciones de padres a hijos se dan en corto tiempo.
Se pueden obtener características contrastantes y bien definidas.
Las Leyes de Mendel.-
Primera Ley de Mendel o Principio de Ley de la Dominancia.- Esta Ley menciona que para cada característica hereditaria existen genes dominantes y recesivos. Sin importar cual padre contribuye con el carácter dominante el híbrido o heterocigoto siempre tendrá fenotipo dominante.
Segunda Ley de Mendel o Principio de la Segregación de Caracteres.Un carácter hereditario se transmite como una unidad que no se combina, se diluye o se pierde al pasar de una generación a otra, sólo se segrega o se separa.
Tercera Ley de Mendel o de Distribución Independiente. Anuncia que un par de alelos se distribuye en forma independiente de otro par de alelos. Los caracteres se heredan de manera independiente unos de otros.
Mendel publicó sus trabajos en 1866, pero ningún científico importante de su tiempo lo conoció, fue hasta 1900 cuando Hugo de Uries, Carl Curres y Erick Schermat descubrieron, trabajando sobre dos procesos de la herencia que Mendel ya los había descubierto.
En 1901 William Sutton encontró que los genes se encuentran en los cromosomas. Los cromosomas son pequeños cuerpos que se encuentran en las células, en su núcleo, en ellos se encuentran los genes.
La cantidad de cromosomas varían según la especie. En las células humanas hay dos tipos de cromosomas, a saber, los autosomas y los heterocromosomas. Los autosomas transmiten las características, los heterocromosomas o cromosomas sexuales determinan el sexo, forman el par 23.
El varón tiene 22 pares de autosomas y un par de cromosomas sexuales formados por uno X y otro Y. La mujer tiene 22 pares de autosomas y un par de cromosomas sexuales formado por los cromosomas XX.
El carotipo.
Consiste en encontrar por medio de la observación en el microscopio, la cantidad de pares de cromosomas que los constituyen.
El hombre ha conseguido un avance increíble en los conocimientos de proceso de la herencia.
Los Genes. Después de que se conoció la estructura del ADN, se continuó investigando qué relación habría entre él y los genes. Ahora se sabe que un gen sólo es una pequeña fracción de cadena del ADN.
Cromosomas.- Estructuras filamentosas constituidas por cromatina (complejo y estructura formada por ácidos nucléicos como ADN, ARN y algunas proteínas que contienen la información genética en una secuencia lineal). Se encuentran en los núcleos de las células; existen dos tipos importantes de cromosomas autosomas o células somáticas, que son aquellas que ayudan a la formación de todos los tejidos, órganos, aparatos, así como la morfología de los seres vivos, en el caso del ser humanos son 22 pares o 44 heterocromosomas (cromosomas sexuales). Estos cromosomas determinan el sexo en los seres vivos.
Las Mutaciones. Mutación es un cambio en el material genético de los organismos, entre los genes o en los cromosomas.
Continuamente ocurren cambios en las características hereditarias de los organismos, es decir, en los genes La mayor parte de las mutaciones es dañina para el organismo, en el cual suceden, por lo general, un individuo cambio tanto que no se adapta a su medio y muere. Solo algunas mutaciones son ventajosas.
Las bacterias ejemplifican la importancia de que un organismo se adapte.
Las mutaciones son cambios en uno o varios genes de los cromosomas. Existen muchos factores que pueden causar los cambios en los genes, estos factores se llaman agentes mutagénicos, algunos de ellos son los Rayos X.
Cuando una mutación sucede en las células germinales hay cambios en el individuo que se formará, pero si ocurre en las células somáticas pueden causar cáncer.
La Manipulación de la Herencia.
Watson y Crick descubrieron que la molécula del ADN está formada por una célula doble. Un grupo de investigadores de los países más avanzados trata de establecer como es el genoma humano. La investigación consiste en establecer cuáles son las características de los cromosomas del ser humano y cuántos genes constituyen a cada cromosoma.
La ingeniería genética es considerada creación de métodospara el manejo de genes en microorganismos, plantas y animales, incluido el hombre.
Beneficios de la aplicación de la genética en la Agricultura, la Zootecnia y la Industria.
La hibridación consiste en la fecundación entre dos individuos de distintos géneros o especies. Para realizar la hibridación en las plantas se eliminan los estambres de la flor destinada a producción de semillas y se deposita en su estigma el polen de la planta seleccionada para el cruce.
La genética aplicada es la rama de la genética que investiga los procedimientos y técnicas adecuadas para el mejoramiento, adaptación y selección de las especies biológicas. Gracias a ella se obtiene cada vez mayor cantidad de razas y variedades agrícolas y ganaderas, lo que repercute en el mejor rendimiento alimentario, mayor valor económicp y resistencia a los parásitos y otras enfermedades.
Norman E. Borlaug inició en México la revoluciónverde, ganó el Premio Nobel de la Paz en 1970.
Clonación de los Organismos.
Clonación significa la producción de copias múltiples de individuos genéticamente idénticos, obtenidos a partir de un sólo padre, ya sea una célula o un grupo de ellas.
Procesos de inseminación artificial.
Inseminación artificial es la técnica empleada en animales para conseguir mejores razas, que consiste en transferir espermatozoides del macho a los órganos sexuales de la hembra. El semen de animales de calidad superior (sementales) se colecta, se congela y posteriormente se inyecta artificialmente en el aparato reproductor de la hembra en el momento oportuno.
La inseminación artificial es otra de las aplicaciones de ingeniería genética que ayuda al mejoramiento de especies animales.
Fecundación in vitro.
Se toma un óvulo de la mujer, se fecunda y se coloca en el útero de la mujer.

ADN y ARN


A D N
Pruebas de ADN, utilización de restos orgánicos para identificar el ácido desoxirribonucleico (ADN) de una persona. Se ha realizado un buen número de pruebas científicas que prueban que el ADN es la base de la herencia, entre las que se pueden destacar: a) en el proceso normal de reproducción celular, los cromosomas (estructuras con ADN) se duplican para proporcionar a los núcleos hijos los mismos genes que la célula madre; b) las mutaciones provocadas se producen por una alteración de la estructura del ADN que tienen como efecto una grave alteración de la descendencia de las células afectadas; c) el ADN extraído de un virus basta por sí mismo para reproducir el virus entero, por lo que parece claro que, en la esfera jurídica y a efectos legales, tiene toda la información genética para ello. Por todo ello, el ADN puede llegar a ser muy útil en Derecho, no sólo para identificar a una persona gracias a los restos orgánicos encontrados donde se haya cometido un crimen (en especial en delitos contra la libertad sexual o en los que se ha ejercido violencia), sino también para determinar la filiación biológica de una persona.
Ácido desoxirribonucleico (ADN), material genético de todos los organismos celulares y casi todos los virus. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproduce y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.
ESTRUCTURA
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina (abreviada como A), guanina (G), timina (T) y citosina (C). La molécula de desoxirribosa ocupa el centro del nucleótido y está flanqueada por un grupo fosfato a un lado y una base al otro. El grupo fosfato está a su vez unido a la desoxirribosa del nucleótido adyacente de la cadena. Estas subunidades enlazadas desoxirribosa-fosfato forman los lados de la escalera; las bases están enfrentadas por parejas, mirando hacia el interior, y forman los travesaños.
Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno.
En 1953, el bioquímico estadounidense James Watson y el biofísico británico Francis Crick publicaron la primera descripción de la estructura del ADN. Su modelo adquirió tal importancia para comprender la síntesis proteica, la replicación del ADN y las mutaciones, que los científicos obtuvieron en 1962 el Premio Nobel de Medicina por su trabajo.
SÍNTESIS PROTEICA
El ADN incorpora las instrucciones de producción de proteínas. Una proteína es un compuesto formado por moléculas pequeñas llamadas aminoácidos, que determinan su estructura y función. La secuencia de aminoácidos está a su vez determinada por la secuencia de bases de los nucleótidos del ADN. Cada secuencia de tres bases, llamada triplete, constituye una palabra del código genético o codón, que especifica un aminoácido determinado. Así, el triplete GAC (guanina, adenina, citosina) es el codón correspondiente al aminoácido leucina, mientras que el CAG (citosina, adenina, guanina) corresponde al aminoácido valina. Por tanto, una proteína formada por 100 aminoácidos queda codificada por un segmento de 300 nucleótidos de ADN. De las dos cadenas de polinucleótidos que forman una molécula de ADN, sólo una, llamada paralela, contiene la información necesaria para la producción de una secuencia de aminoácidos determinada. La otra, llamada antiparalela, ayuda a la replicación.
La síntesis proteica comienza con la separación de la molécula de ADN en sus dos hebras. En un proceso llamado transcripción, una parte de la hebra paralela actúa como plantilla para formar una nueva cadena que se llama ARN mensajero o ARNm (véase Ácido ribonucleico). El ARNm sale del núcleo celular y se acopla a los ribosomas, unas estructuras celulares especializadas que actúan como centro de síntesis de proteínas. Los aminoácidos son transportados hasta los ribosomas por otro tipo de ARN llamado de transferencia (ARNt). Se inicia un fenómeno llamado traducción que consiste en el enlace de los aminoácidos en una secuencia determinada por el ARNm para formar una molécula de proteína.
Un gen es una secuencia de nucleótidos de ADN que especifica el orden de aminoácidos de una proteína por medio de una molécula intermediaria de ARNm. La sustitución de un nucleótido de ADN por otro que contiene una base distinta hace que todas las células o virus descendientes contengan esa misma secuencia de bases alterada. Como resultado de la sustitución, también puede cambiar la secuencia de aminoácidos de la proteína resultante. Esta alteración de una molécula de ADN se llama mutación. Casi todas las mutaciones son resultado de errores durante el proceso de replicación. La exposición de una célula o un virus a las radiaciones o a determinados compuestos químicos aumenta la probabilidad de sufrir mutaciones.
REPLICACIÓN
En casi todos los organismos celulares, la replicación de las moléculas de ADN tiene lugar en el núcleo, justo antes de la división celular. Empieza con la separación de las dos cadenas de polinucleótidos, cada una de las cuales actúa a continuación como plantilla para el montaje de una nueva cadena complementaria. A medida que la cadena original se abre, cada uno de los nucleótidos de las dos cadenas resultantes atrae a otro nucleótido complementario previamente formado por la célula. Los nucleótidos se unen entre sí mediante enlaces de hidrógeno para formar los travesaños de una nueva molécula de ADN. A medida que los nucleótidos complementarios van encajando en su lugar, una enzima llamada ADN polimerasa los une enlazando el grupo fosfato de uno con la molécula de azúcar del siguiente, para así construir la hebra lateral de la nueva molécula de ADN. Este proceso continúa hasta que se ha formado una nueva cadena de polinucleótidos a lo largo de la antigua; se reconstruye así un nueva molécula con estructura de doble hélice.
HERRAMIENTAS Y TÉCNICAS PARA EL ESTUDIO DEL ADN
Existen numerosas técnicas y procedimientos que emplean los científicos para estudiar el ADN. Una de estas herramientas utiliza un grupo de enzimas especializadas, denominadas enzimas de restricción, que fueron encontradas en bacterias y que se usan como tijeras moleculares para cortar los enlaces fosfato de la molécula de ADN en secuencias específicas. Las cadenas de ADN que han sido cortadas con estas enzimas presentan extremos de cadena sencilla, que pueden unirse a otros fragmentos de ADN que presentan extremos del mismo tipo. Los científicos utilizan este tipo de enzimas para llevar a cabo la tecnología del ADN recombinante o ingeniería genética. Esto implica la eliminación de genes específicos de un organismo y su sustitución por genes de otro organismo.
Otra herramienta muy útil para trabajar con ADN es un procedimiento llamado reacción en cadena de la polimerasa (RCP), también conocida como PCR por su traducción directa del inglés (polymerase chain reaction). Esta técnica utiliza una enzima denominada ADN polimerasa que copia cadenas de ADN en un proceso que simula la forma en la que el ADN se replica de modo natural en la célula. Este proceso, que ha revolucionado todos los campos de la biología, permite a los científicos obtener gran número de copias a partir de un segmento determinado de ADN.
La tecnología denominada huella de ADN (DNA fingerprinting) permite comparar muestras de ADN de diversos orígenes, de manera análoga a la comparación de huellas dactilares. En esta técnica los investigadores utilizan también las enzimas de restricción para romper una molécula de ADN en pequeños fragmentos que separan en un gel al que someten a una corriente eléctrica (electroforesis); de esta manera, los fragmentos se ordenan en función de su tamaño, ya que los más pequeños migran más rápidamente que los de mayor tamaño. Se puede obtener así un patrón de bandas o huella característica de cada organismo. Se utiliza una sonda (fragmento de ADN marcado) que hibride (se una específicamente) con algunos de los fragmentos obtenidos y, tras una exposición a una película de rayos X, se obtiene una huella de ADN, es decir, un patrón de bandas negras característico para cada tipo de ADN.
Un procedimiento denominado secuenciación de ADN permite determinar el orden preciso de bases nucleótidas (secuencia) de un fragmento de ADN. La mayoría de los tipos de secuenciación de ADN se basan en una técnica denominada extensión de oligonucleótido (primer extension) desarrollada por el biólogo molecular británico Frederick Sanger. En esta técnica se lleva a cabo una replicación de fragmentos específicos de ADN, de tal modo que el extremo del fragmento presenta una forma fluorescente de una de las cuatro bases nucleótidas. Los modernos secuenciadores de ADN parten de la idea del biólogo molecular estadounidense Leroy Hood, incorporando ordenadores y láser en el proceso.
Los científicos ya han completado la secuenciación del material genético de varios microorganismos incluyendo la bacteria Escherichia coli. En 1998 se llevó a cabo el reto de la secuenciación del genoma de un organismo pluricelular, un gusano nematodo conocido como Caenorhabditis elegans. En el año 2000 se descifró el material genético de la mosca del vinagre (Drosophila melanogaster) y de la planta Arabidopsis thaliana, entre otros organismos. Pero el acontecimiento más importante, dentro de este grupo de investigaciones, fue el desciframiento del genoma humano llevado a cabo en febrero de 2001, de manera independiente, por el consorcio público internacional Proyecto Genoma Humano y la empresa privada Celera Genomics.
APLICACIONES
La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de la medicina. A través de la tecnología del ADN recombinante los científicos pueden modificar microorganismos que llegan a convertir en auténticas fábricas para producir grandes cantidades de sustancias útiles. Por ejemplo, esta técnica se ha empleado para producir insulina (necesaria para los enfermos de diabetes) o interferón (muy útil en el tratamiento del cáncer). Los estudios sobre el ADN humano también revelan la existencia de genes asociados con enfermedades específicas como la fibrosis quística y determinados tipos de cáncer. Esta información puede ser valiosa para el diagnóstico preventivo de varios tipos de enfermedades.
La medicina forense utiliza técnicas desarrolladas en el curso de la investigación sobre el ADN para identificar delincuentes. Las muestras de ADN tomadas de semen, piel o sangre en el escenario del crimen se comparan con el ADN del sospechoso; el resultado es una prueba que puede utilizarse ante los tribunales. Véase Pruebas de ADN.
El estudio del ADN también ayuda a los taxónomos a establecer las relaciones evolutivas entre animales, plantas y otras formas de vida, ya que las especies más cercanas filogenéticamente presentan moléculas de ADN más semejantes entre sí que cuando se comparan con especies más distantes evolutivamente. Por ejemplo, los buitres americanos están más emparentados con las cigüeñas que con los buitres europeos, asiáticos o africanos, a pesar de que morfológicamente y etológicamente son más similares a estos últimos.
La agricultura y la ganadería se valen ahora de técnicas de manipulación de ADN conocidas como ingeniería genética y biotecnología. Las estirpes de plantas cultivadas a las que se han transferido genes pueden rendir cosechas mayores o ser más resistentes a los insectos. También los animales se han sometido a intervenciones de este tipo para obtener razas con mayor producción de leche o de carne o razas de cerdo más ricas en carne y con menos grasa.


A C I D O R I B O N U C L E I C O (A R N)
Material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
A R N C E L U L A R
En organismos celulares, el ARN es una cadena de polinucleótidos de una sola hebra, es decir, una serie de nucleótidos enlazados. Hay tres tipos de ARN: el ARN ribosómico (ARNr) se encuentra en los ribosomas celulares (estructuras especializadas situadas en los puntos de síntesis de proteínas); el ARN de transferencia (ARNt) lleva aminoácidos a los ribosomas para incorporarlos a las proteínas; el ARN mensajero (ARNm) lleva una copia del código genético obtenida a partir de la secuencia de bases del ADN celular. Esta copia especifica la secuencia de aminoácidos de las proteínas. Los tres tipos de ARN se forman a medida que son necesarios, utilizando como plantilla secciones determinadas del ADN celular.
A R N V Í R I C O
Algunos virus tienen ARN de cadena doble, formado por dos cadenas de polinucleótidos complementarios. En estos virus, la replicación del ARN en la célula hospedante sigue la misma pauta que la replicación del ADN. Cada nueva molécula de ARN tiene una cadena de polinucleótidos procedente de otra anterior. Cada una de las bases de los nucleótidos de la cadena se acopla con una base complementaria de otro nucleótido de ARN: adenina con uracilo y guanina con citosina. Hay dos tipos de virus con ARN de cadena única. Uno de ellos, el poliovirus, virus causante de la poliomielitis humana (véase Enterovirus), penetra en la célula hospedante y sintetiza una cadena de ARN complementaria para transformar la molécula sencilla en doble. Durante la replicación las dos hebras se separan, pero sólo la formada recientemente atrae nucleótidos con bases complementarias. Por tanto, la cadena de polinucleótidos formada como resultado de la replicación es exactamente igual a la original.
El otro tipo, que agrupa los llamados retrovirus, comprende el virus de la inmunodeficiencia humana (VIH), que causa el SIDA, y otros virus causantes de tumores. Después de entrar en la célula hospedante, el retrovirus forma una cadena de ADN complementaria de su propio ARN valiéndose de los nucleótidos de la célula. Esta nueva cadena de ADN se replica y forma una doble hélice que se incorpora a los cromosomas de la célula hospedante, donde a su vez se replica junto con el ADN celular. Mientras se encuentra en la célula hospedante, el ADN vírico sintetizado a partir del ARN produce virus ARN de cadena única que abandonan la célula e invaden otras.
I N V E S T I G A C I Ó N
Varias pruebas sugieren que el ARN fue el primer material genético. El equivalente a la molécula genética más arcaica sería probablemente de estructura sencilla y debería ser capaz de tener actividad enzimática. Además, la molécula debería encontrarse en todos los organismos. La enzima ribonucleasa-P, que se encuentra en todos los organismos, está formada por proteína y una forma de ARN con actividad enzimática. Basándose en esta prueba, algunos científicos opinan que la porción ARN de la ribonucleasa-P sería el equivalente moderno de la más antigua molécula genética.

jueves, 13 de noviembre de 2008

grupos taxonomicos




Grupos taxonómicos y su proporción relativa
Nomenclatura y taxonomía de los seres vivos
El trabajo de muchos científicos ha ido identificando, estudiando y clasificando a los distintos seres vivos. Cuando se encuentra un organismo cuyas características son distintas de todos los conocidos hasta ahora se le pone un nuevo nombre y se le clasifica en alguno de los grupos ya existentes o, más raramente, se hace un nuevo grupo para él, si es muy diferente de todos los anteriores.
Los nombres científicos de las especies están formados por dos palabras latinas, la primera designa el género al que pertenece. Así, por ejemplo, el nombre científico de la encina es Quercus ilex. Es una especie del género Quercus, en el que hay otras especies distintas. Por ejemplo Quercus robur, el roble pedunculado que forma los grandes robledales de fondo de valle, o Quercus rubra, el roble americana, etc.
Los géneros parecidos forman familias, las familias se agrupan en ordenes, estos en clases y las clases en tipos o phylla.
Durante muchos tiempo era habitual agrupar a todos los seres vivos en dos grandes reinos, el de las Plantas y el de los Animales. Esta distribución es muy clara cuando pensamos en las plantas y animales superiores, pero cuando se intentaba situar en estos reinos otros organismos como los hongos, bacterias, protozoos y algas unicelulares había muchas dificultades. Para hacer frente a esta dificultad hace unas décadas se hizo corriente agruparlos en cinco reinos:
Monera.- Incluye las bacterias y las cianobacterias o algas verdeazuladas. Sus células son procarióticas (sin envoltura nuclear).
Protista.- Organismos unicelulares o pliricelulares muy sencillos. Sus células son eucarióticas.
Fungi.- Incluye los hongos. Son organismos que se alimentan secretando enzimas digestivos que digieren la comida en el exterior del organismo y absorbiendo los nutrientes ya digeridos.
Plantae.- Las plantas. Su nutrición es por fotosíntesis
Animalia.- Los animales. Son heterotrofos y necesitan nutrirse de moléculas orgánicas complejas. En la actualidad las clasificaciones de los seres vivos que denominamos microorganismos se han complicado hasta incluir un gran número de troncos filogenéticos.



viernes, 7 de noviembre de 2008

taxonomia y sistematica de las plantas

reino plantae


El reino Plantae incluye los musgos, helechos, coníferas y plantas con flores, en una variedad que supera las 250.000 especies, siendo el segundo grupo luego de los artrópodos en el reino animal. Se consideran derivados de las algas.
La principal característica del reino es la presencia de clorofila, con la cual capturan la luz, produciendo compuestos carbonados, por esta característica son autótrofos. Otras caracteristicas de este reino:
Todos son eucariotas multicelulares
Poseen paredes celulares constituidas principalmente por celulosa
Nutrición: mediante la fotosíntesis que se realiza por medio de la clorofila de los cloroplastos, existen algunos ejemplos de plantas parcial o totalmente heterótrofas.
Reproducción sexual con alternancia de generaciones: esporofito diploide y gametofito haploide.
Las plantas tienen generaciones alternas: individuos diploides (2n) llamados esporofitos que alternan con individuos (o grupos de células producidas por sucesivas mitosis) haploides (n) llamados gametofitos.
Todas las plantas presentan alternancia de generaciones, en la cual una fase diploide (esporofito) incluye al embrión, y una fase haploide (gametofito) que produce los gametos por mitosis.
El cigoto 2n producido por la fecundación origina el esporofito, dominante en la mayoría de los vegetales, es la planta verde en la cual se diferencian células que luego de sufrir meiosis dan células haploides (esporas), que después de varias mitosis (conformando una generación) forman un gametofito haploide multicelular, éste normalmente es dependiente y parásito del esporofito y produce las gametas por mitosis, reiniciando el ciclo. CICLO ANIMADO
Otra contribución de las plantas es la formación de los ambientes. Solamente las regiones árticas y las profundidades oceánicas carecen de plantas, el resto de los ambientes terrestres, desde los desiertos a las tundras y los bosques o praderas fueron producidos y moldeados por las plantas.
Clasificación de las Plantas
Este reino está formado por cuatro grupos principales: Briófitos, Pteridofitas (helechos), Gimnospermas y Angiospermas.
I. PLANTAS NO VASCULARESPlantas sin tejidos vasculares. Con una generación gametofítica dominanteDivisión BRIÓFITAS:
Clase Hepaticae (Hepáticas)
Clase Antocerothae (Antoceros)
Clase Musci (Musgos)
II. PLANTAS VASCULARESPlantas con tejidos vasculares diferenciados en xilema y floema, con una generación esporofítica dominante

A. Plantas sin semillas: plantas con tejidos vasculares, pero sin semillasPTERIDOPHYTAS
División Pterophyta (Pteridófitos, helechos)
División Psilophyta (Psilófitos)
División Sphenophyta (Equisetos, cola de caballo)
División Licophyta (Licopodios)
AA. Plantas con semillas SPERMATOPHYTA

B. Plantas con óvulos desnudos
Gimnospermas (PYNOPHYTA): tanto los óvulos como las semillas están desprotegidos
División Cycadophyta
División Ginkgophyta
División Coniferophyta
División Gnetophyta

BB. Los óvulos están encerrados en un carpelo, que a la madurez se transforman en las semillas encerradas en el fruto (respectivamente)
Angiospermas (MAGNOLIOPHYTA)Se diferenciasn dos clases:

C. Embrión con un cotiledón
Clase (LILIOPSIDAE): embrión un solo cotiledón, hojas de nerviación paralela, piezas florales en múltiplo de 3, haces vasculares dispersos en el tallo, sin crecimiento secundario típico.
CC. Embrión con dos cotiledones
Clase Dicotiledóneas (MAGNOLIPSIDAE): hojas de nerviación reticulada, piezas florales en múltiplo de 4 o 5, haces vasculares se disponen en el tallo en forma de anillo, muchas especies presentan cambiun vascular y crecimiento secundario.